Minimum Connected Dominating Sets of Random Cubic Graphs
نویسنده
چکیده
We present a simple heuristic for finding a small connected dominating set of cubic graphs. The average-case performance of this heuristic, which is a randomised greedy algorithm, is analysed on random n-vertex cubic graphs using differential equations. In this way, we prove that the expected size of the connected dominating set returned by the algorithm is asymptotically almost surely less than 0.5854n.
منابع مشابه
Minimum independent dominating sets of random cubic graphs
We present a heuristic for finding a small independent dominating set, D, of cubic graphs. We analyse the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations and obtain an upper bound on the expected size of D. A corresponding lower bound is derived by means of a direct expectation argument. We prove that D asymptotically almost...
متن کاملOn connected k-domination in graphs
Let G = (V (G), E(G)) be a simple connected graph, and let k be a positive integer. A subset D ⊆ V (G) is a connected k-dominating set of G if its induced subgraph is connected and every vertex of V (G) −D is adjacent to at least k vertices of D. The connected k-domination number γ k(G) is the minimum cardinality among the connected k-dominating sets of G. In this paper, we give some properties...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کامل3 - Chromatic Cubic Graphs with Complementary Connected Domination Number Three
Let G (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The domination number γ (G) is the minimum cardinality taken over all such dominating sets in G. A subset S of V is said to be a complementary connected dominating set (ccd-set) if S is a dominating set and < V-S > is connected. The chromatic number χ is the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 9 شماره
صفحات -
تاریخ انتشار 2002